China Best Sales Customized Worm Gears Unit with Shaft Supplier for Reducer Transmission supplier

Product Description

Product Description

Our Capabilities of Manufacturing Gears & Splines.

  Hobbing Milling Tooth Grinding
Max O.D. 1250mm 2000mm 2000mm
Min I.D. 20mm 50mm 20mm
Max Face Width 500mm 500mm 1480mm
Max DP DP 1 DP 1 DP 0.5
Max Module 26mm 26mm 45mm
DIN Level DIN Class 6 DIN Class 6 DIN Class 4
Tooth Finish Ra 3.2 Ra 3.2 Ra 0.6
Max Helix Angle ±45° ±45° ±45°

Precision Transmission Parts

Custom CNC Machining Parts Service

Quotation

According to your drawing(size, material,and required technology, etc)

Materials

Aluminum, Copper, Brass, Stainless Steel, Steel, Iron, Alloy,  Titanium etc.

Surface Treatment

Anodizing, Brushing, Galvanized, laser engraving, Silk printing, polishing, Powder coating, etc.

Tolerance

+/- 0.005mm-0.01mm, 100% QC quality inspection before delivery, can provide quality inspection form

Processing

CNC Turning, Milling, Drilling, Hobbing, Polishing, Bushing, Surface Treatment etc.

Drawing Formats

Solid Works, Pro/Engineer, UG, AutoCAD(DXF, DWG), PDF, TIF etc.

 

5-axis CNC Milling Parts

Material Available

Aluminum

Stainless Steel

Brass

Copper

Iron

Plastic

AL6061

SS201

C35600

C11000

20#

POM

AL6063

SS301

C36000

C12000

45#

Peek

AL6082

SS303

C37700

C12200

Q235

PMMA

AL7075

SS304

C37000

C15710

Q345B

ABS

AL2571

SS316

C37100

etc…

Q345B

Delrin

AL5052

SS416

C28000

 

1214/1215

Nylon

ALA380

etc…

C26000

 

12L14

PVC

etc…

 

C24000

 

Carbon steel

PP

 

 

C22000

 

4140 / 4130

PC

 

 

etc…

 

etc…

etc…

Surface Treatment

Material Available

As machined

All metals

Smoothed

All metals and Plastic (e.g aluminum, steel,nylon, ABS)

Powder Coated

All metals ( e.g aluminum, steel)

Brushing

All metals (e.g aluminum, steel)

Anodized Hardcoat

Aluminum and Titanium alloys

Electropolished

Metal and plastic (e.g aluminum, ABS)

Bead Blasted

Aluminum and Titanium alloys

Anodized Clear or Color

Aluminum and Titanium alloys

Application Field

 

Company Profile

HangZhou CHINAMFG Intelligent Technology Co. Ltd was established in 2003. Since established, we always focus on precision transmission and mechanical parts manufacturing & processing. We have a professional R&D team and advanced gear hobbing machine, gear grinding machine, gear shaping machine, CNC Lathe machines and milling machines, which can give comprehensive solutions according to user’s requirements, from the design. 

we bulid us through help others succes. CHINAMFG always focuses on the development ability, and now, it owns more than 30 patents. Our company has several advanced engineering design softwares and applied more than 20 new technologies and new processes. And also, it is certified by ISO 9001: 2015 and ISO 14001: 2015.

For more than 10 years, our company has been committed to the production and processing of precision parts and non-standard automation design. With a highly qualified workforce, relying on rich experience in precision processing and international leading equipment, the company has established strategic partnerships with world-renowned enterprises in the fields of aviation, medical and industrial precision test and measurement equipment.

FAQ

Q1: How to get a quotation?

A1: Please send us drawings in igs, dwg, step etc. together with detailed PDF.If you have any requirements, please note,
and we could provide professional advice for your reference.

 

Q2: How long can i get the sample?

A2: Depends on your specific items,within 7-10 days is required generally.

 

Q3: How to enjoy the OEM services?

A3: Usually, base on your design drawings or original samples, we give some technical proposals and a quotation to you, after your agreement, we produce for you.

 

Q4: Will my drawings be safe after sending to you?

A4: Yes, we will keep them well and not release to third party without your permission. Of course, we would ensure the safety of the drawing.

 

Q5: What shall we do if we do not have drawings?

A5: Please send your sample to our factory,then we can copy or provide you better solutions. Please send us pictures or drafts with dimensions(Length,Hight,Width), CAD or 3D file will be made for you if placed order.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car, Industrial Machine
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

spur gear

Can spur gears be used in both horizontal and vertical orientations?

Yes, spur gears can be used in both horizontal and vertical orientations. Here’s a detailed explanation:

Spur gears are one of the most common types of gears used in various applications. They have straight teeth that are parallel to the gear axis and are designed to transmit power and torque between parallel shafts. The versatility of spur gears allows them to be used in different orientations, including horizontal and vertical configurations.

Horizontal Orientation:

In horizontal applications, where the gear shafts are positioned parallel to the ground, spur gears are widely utilized. Horizontal orientations are commonly found in machinery such as conveyor systems, automobiles, industrial equipment, and many other applications. Spur gears in horizontal configurations can efficiently transmit power and torque between shafts, providing reliable operation and smooth gear engagement.

Vertical Orientation:

Spur gears can also be used in vertical orientations, where the gear shafts are positioned perpendicular to the ground. Vertical gear arrangements are often encountered in applications such as wind turbines, elevators, vertical conveyor systems, and various industrial machinery. In these cases, the weight of the gears and any additional loads acting on them must be considered to ensure proper load distribution and support. Adequate lubrication and proper gear design, including tooth profile and material selection, are important factors to ensure reliable and efficient operation in vertical orientations.

When using spur gears in vertical orientations, some additional considerations may be necessary due to the effects of gravity and potential oil leakage. In vertical applications, gravity can affect the distribution of lubricant, potentially leading to inadequate lubrication of gear teeth. Proper lubrication techniques and lubricant selection should be employed to ensure sufficient film thickness and minimize wear. Additionally, seals or other measures may be required to prevent oil leakage, especially in applications where high-speed rotation or high loads are involved.

It’s important to note that while spur gears can be used in both horizontal and vertical orientations, the specific design and configuration of the gear system should be evaluated to ensure optimal performance and longevity. Factors such as load distribution, gear alignment, lubrication, and material selection should be carefully considered based on the intended orientation and operating conditions of the gear system.

Consulting with gear manufacturers, engineers, or industry experts can provide further guidance on the suitability and design considerations when using spur gears in horizontal or vertical orientations.

spur gear

What is the purpose of using spur gears in machinery?

In machinery, spur gears serve several important purposes due to their unique characteristics and capabilities. Here’s a detailed explanation of the purpose of using spur gears in machinery:

  1. Power Transmission: Spur gears are primarily used for power transmission in machinery. They transfer rotational motion and torque from one shaft to another, allowing machinery to perform various tasks. By meshing the teeth of two or more spur gears together, power can be transmitted efficiently and reliably throughout the machinery.
  2. Speed Reduction or Increase: Spur gears enable speed reduction or increase in machinery. By combining gears with different numbers of teeth, the rotational speed can be adjusted to match the desired output speed. For example, using a larger gear driving a smaller gear can increase the speed output while reducing the torque, while the opposite arrangement can decrease the speed while increasing the torque.
  3. Torque Amplification: Spur gears can amplify torque in machinery. By using gears with different numbers of teeth, the torque can be adjusted to match the required output. For example, using a smaller gear driving a larger gear can increase the torque output while reducing the speed, while the opposite arrangement can decrease the torque while increasing the speed.
  4. Directional Control: Spur gears provide directional control in machinery. By meshing gears with opposite orientations, the rotational direction of the driven shaft can be reversed or changed. This directional control is crucial for machinery that requires bi-directional motion or needs to change the direction of operation.
  5. Mechanical Advantage: Spur gears offer a mechanical advantage in machinery. By utilizing gear ratios, spur gears can multiply or divide the force exerted on the input shaft. This mechanical advantage allows machinery to generate higher forces or achieve precise movements with reduced effort.
  6. Precision Positioning: Spur gears facilitate precise positioning in machinery. The accurate tooth engagement of spur gears ensures precise control over rotational motion, making them suitable for applications that require precise positioning or synchronization of components. Machinery such as CNC machines, robotics, and automation systems often rely on spur gears for accurate movement and positioning.
  7. Compact Design: Spur gears have a compact design, making them suitable for machinery with space constraints. They can be arranged in-line, parallel, or at right angles, allowing for efficient power transmission in tight spaces. Their compactness enables machinery to be designed with smaller footprints and optimized layouts.
  8. Reliability and Durability: Spur gears are known for their reliability and durability in machinery. The direct tooth engagement and uniform load distribution result in efficient power transmission with reduced wear and stress concentration. When properly lubricated and maintained, spur gears can withstand heavy loads and operate reliably over extended periods.
  9. Cost-Effectiveness: Spur gears are often cost-effective in machinery applications. Their simple design and ease of manufacturing contribute to lower production costs. Additionally, their high efficiency helps reduce energy consumption, resulting in potential long-term cost savings. The availability of spur gears in various sizes and materials further enhances their cost-effectiveness.

By utilizing spur gears in machinery, engineers and designers can achieve efficient power transmission, speed and torque control, directional versatility, mechanical advantage, precise positioning, compact design, reliability, durability, and cost-effectiveness. These advantages make spur gears a popular choice in a wide range of machinery applications across industries.

spur gear

How do spur gears differ from other types of gears?

Spur gears, as a specific type of gear, possess distinct characteristics and features that set them apart from other types of gears. Here’s a detailed explanation of how spur gears differ from other types of gears:

  • Tooth Geometry: One of the primary differences lies in the tooth geometry. Spur gears have straight teeth that are cut parallel to the gear axis. This differs from other gear types, such as helical gears or bevel gears, which have angled or curved teeth.
  • Gear Meshing: Spur gears mesh by direct contact between their teeth, creating a line or point contact. This meshing arrangement is different from other gear types, such as worm gears or planetary gears, where the teeth mesh in a different manner, such as through sliding contact or multiple points of contact.
  • Direction of Force: Spur gears transmit rotational motion and torque in a specific direction. The force is transmitted along the axis of the gears, making them suitable for parallel shaft arrangements. In contrast, other types of gears, such as bevel gears or hypoid gears, can transmit motion between non-parallel or intersecting shafts.
  • Noise and Vibration: Spur gears tend to produce more noise and vibration compared to certain other gear types. The direct contact between the teeth and the sudden engagement/disengagement of the teeth can generate impact forces, leading to noise and vibration. In contrast, gear types like helical gears or double-enveloping worm gears provide smoother meshing and reduced noise levels.
  • Efficiency and Load Distribution: Spur gears generally offer high efficiency in power transmission due to their direct tooth engagement. However, they may experience higher stress concentrations and load concentrations compared to other gear types. Gear designs like helical gears or planetary gears can distribute the load more evenly across the teeth, reducing stress concentrations.
  • Applications: Spur gears find widespread applications in various industries and equipment. Their simplicity, ease of manufacture, and cost-effectiveness make them suitable for a wide range of systems. Other gear types have specific applications where their unique characteristics, such as high torque transmission, precise motion control, or compact size, are advantageous.

In summary, spur gears differ from other types of gears in terms of tooth geometry, gear meshing, direction of force transmission, noise and vibration characteristics, load distribution, and specific applications. Understanding these differences is crucial when selecting the appropriate gear type for a particular mechanical system, considering factors such as load requirements, motion control, efficiency, and design constraints.

China Best Sales Customized Worm Gears Unit with Shaft Supplier for Reducer Transmission supplier China Best Sales Customized Worm Gears Unit with Shaft Supplier for Reducer Transmission supplier
editor by CX 2023-09-21